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This image composite shows and aerial photo of the region around 
the source site of the Deepwater Horizon (MC-252) oil spill in the 
Gulf of Mexico on 5/26/2010.  Overlaid is an oil thickness dis-
tribution map derived from Ocean Imaging Corp.’s aerial multi-
spectral mapping system.  The system’s oil thickness derivation 
algorithm used three channels in the visible, one in the near-IR and 
one in the thermal-IR to assign the oil-containing pixels into sev-
eral thickness classes.  Such GIS-compatible maps of the source 
region and other regions of priority within the spill were gener-
ated once to twice daily and electronically disseminated to the re-
sponse community. More details on the imaging and how it was 
utilized throughout the response can be found in a peer-reviewed 
article in this issue.  The surface oil signature is displaced from 
the actual bottom source location due to currents that affected the 
oil as it took 4+ hours to rise from the 1500m depth.  The green-
ish feature between the vessels in the lower left corresponds to re-
sidual drilling mud used during one of several different attempts 
to inject material into and plug the leaking well.  For more information on the system and Ocean Imag-
ing Corp. see www.oceani.com or call 858-792-8529. Cover image art by Paula Klein, Ocean Imaging.
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Introduction
The operational utilization of satellite and aerial remote sensing data 
for oil spill reconnaissance and response has steadily increased with 
each event. A number of European nations have utilized various remote 
sensing technologies for over a decade to detect and monitor at-sea 
spills and illegal bilge dumps (Trieschmann et al. 2003, Zielinski 2003, 
Bonn Agreement 2007, Ferraro et al. 2009). Remote sensing has also 
been increasingly utilized during spill response around the American 
continent, most notably during the 2010 Deepwater Horizon (DWH) 
spill in the Gulf of Mexico, which represents to-date the most intense, 
multi-faceted utilization of remote sensing technology in a major oil spill. 
During that event, satellite and aerial imaging were heavily relied upon 
to monitor the extents of the spill, as well as helped guide daily response 
operations. A peer-reviewed article (Svejkovsky et al., this issue) details 
the various applications of aerial multispectral imaging done during the 
DWH response with a system developed by Ocean Imaging Corporation 
(OI). 

The most common application of satellite and aerial imaging for oil 
spill response has up to now been focused on mapping the spatial extents 
of the oil slick on the ocean surface, and potentially its thickness and 
weathering properties. Research work and OI’s operational involvement 
in the DWH and other spills have shown, however, that remote sensing 
technologies can provide useful information extending beyond the 
traditional oil slick extent mapping surveys. This article highlights three 
such emerging remote sensing applications.

Expanding
Remote

for Oil Spill Response

the Utility of
Sensing Data

By Jan Svejkovsky and Mark Hess

Sensing Dispersant Effects with Thermal 
Imagery
Surface and, for the first time, subsurface chemical dispersants were 
used during the DWH response and proved to be highly effective 
for decreasing the amount of oil floating on the sea surface (and thus 
potentially reaching the shoreline). Traditional aerial dispersant spraying 
was utilized throughout the response. Additionally, dispersants were 
directly applied to the leaking wellhead at depth (~1500 m). To obtain 
permission from the Environmental Protection Agency (EPA) for the 
subsurface application, the usage required evaluation, which occurred 
in early May, 2010 as a series of time-dependent application tests. OI’s 
aerial oil mapping system was one of the techniques used to evaluate the 
efficacy of the subsurface dispersant injections. Multispectral visible/near 
IR and thermal IR imagery was collected over the spill source site before, 
during and after the subsurface dispersant injection. Due to the depth of 
the DWH well, it took over four hours for the oil to reach the sea surface, 
resulting in a significant time lag between the initiation and termination 
of the dispersant injections and any changes in oil volume perceived on 
the surface. With these considerations in mind, several imaging survey 
missions were performed over the source site that quantified the surface oil 
density using multispectral-based oil thickness algorithms (Svejkovsky et 
al. 2008, Svejkovsky and Muskat 2009). Results are displayed in Figure 
1. The imagery documented a significant decrease in surface oil as a result 
of the subsurface dispersant test injections. These remote sensing-based 
analyses were one of the data sets incorporated by the EPA and other 

continued on page 1012
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agencies in assessing the continued 
use of subsurface dispersants, 
which subsequently permitted their 
continued utilization during the DWH 
spill response.

Perhaps the most interesting 
development stemming from OI’s 
dispersant-related imaging during 
DWH was the documentation of 
aerial dispersant application effects. 
As is also discussed in Svejkovsky 
et al. (this issue), some of OI’s aerial 
imaging over-flights were coordinated 
with aerial dispersant releases so that 
pre- and post-application imagery 
could be acquired. Since emittance in 
the thermal IR portion of the spectrum 
does not appreciably penetrate the 
water column, thermal imagery 
recorded by OI’s multispectral aerial 
system represents thermal patterns at 
the sea surface only. During daytime, 
oil floating on the surface can appear 
either warmer or cooler than the surrounding sea water, depending on its 
thickness (Byfield 1998, Davies et al. 1999, Jha et al. 2008, Svejkovsky 
and Muskat 2009). Once submerged, the thermal contrast signature is 
lost. This effect was noted in imagery collected during the DWH incident 
over areas where aerial dispersants were successfully applied. The signal 
from the surface oil was quickly degraded as the aerial dispersants were 
successful in breaking down the oil components, which entered the water 
column as droplets. 

Aerial dispersant applications presently mandate monitoring of their 
success using the Special Monitoring of Applied Response Technologies 
(SMART) protocol (NOAA 2012). The traditional SMART monitoring 
techniques rely on ship-based in situ sampling, which is time consuming 
and spatially limited. Aerial imaging can augment the traditional SMART 
methodology and extend its monitoring efficiency in both time and space. 
Based on initial observations during the DWH flights, additional tests of 
the concept were conducted at the U.S. Department of Interior's Bureau of 
Safety and Environmental Enforcement’s (BSEE)’s Ohmsett test facility 
(a national oil spill response test facility, located in Leonardo, New Jersey 
) in late 2011. The initial test results support OI’s DWH observations. As 
exemplified in Figure 2, within two minutes of being poured into the test 
tank, thick crude oil attains a warmer-than-surrounding-water thermal 
contrast of several degrees Centigrade (Figure 2A). If left untreated with 
dispersant, the oil maintained this thermal signature even when subjected 
to natural dispersion, through wave action induced in the test tank. If 
treated with the chemical dispersant Corexit 9500 (used during DWH), 
the positive thermal contrast rapidly began to disappear (Figure 2 B).This 
signature change corresponded to the oil’s rapid dissolution into the 
water column, as was also corroborated by visual and in situ instrument 
assessments. Ultimately, only residual sheen signatures corresponding 
to a negative (i.e., cooler-than-water) thermal contrast were discernible 
in the imagery (Figure 2C). Further testing is planned to evaluate the 
dispersant application monitoring utility of thermal imaging under various 
sea states, and to determine if the technique could be additionally used to 
quantify the dispersion success rate in cases where complete dispersion 
was not achieved.

Tracking Surface Oil Movement
Accurate estimation of surface oil drift trajectories is very important in all 
oil spill situations. During DWH, the National Oceanic and Atmospheric 
Administration (NOAA) provided daily 24-hour, 48-hour and 72-
hour spill trajectories. These were based on a number of atmospheric 
and oceanographic parameters, including OI’s aerial image-based oil 
thickness analyses. Not utilized, however, were direct observations of the 
oil drift itself, which were not readily available at the time but can be 
obtained from time series of aerial or satellite images. The determination 
of surface current velocity and direction by tracking thermal or visible 
features in time-sequential satellite imagery was pioneered in the 1980s 
(Vastano and Reid 1985, Emery et al. 1986, Svejkovsky 1988). The same 
technique can be applied to directly measure the drift of features within 
an oil slick using a pair of aerial or satellite images, or a combination of 
the two, separated by a known time interval. OI has begun investigating 
this capability using data obtained during the DWH spill. As an example, 
Figure 3 shows surface oil drift vectors derived from directly tracking 
the spatial displacement of distinct oil features identified in OI’s aerial 
imagery acquired near the DWH spill source site on June 17, 2010 and 
a WorldView-2 satellite image of the same area acquired 1.8 hours later. 
The example underscores the relative complexity of the region’s surface 
flow field, which could not be resolved in relatively sparse atmospheric 
and oceanic buoy data but can be extracted in high detail from the 
imagery. Figure 4 highlights meso-scale features identifiable through a 
time series of satellite Synthetic Aperture Radar (SAR) images that can be 
used to measure the overall movement pattern of the DWH slick. Unlike 
satellite imagery whose acquisition timing generally cannot be altered, 
aerial imaging provides the advantage of enabling the exact scheduling of 
the time interval between successive flights and data acquisitions, hence 
enabling adjustment of the feature tracking time interval to maximize the 
method’s effectiveness under existing current and wind drift conditions.
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Figure 1.  Color photos (top) and oil thickness distributions within a 10km radius of the DWH spill source site 
derived from aerial multispectral imagery (middle) during and after an experimental subsurface dispersant 
injection 10-11 May, 2010.  The data document a marked decrease in surface areas covered by thick oil 
during the release, and a resumption of greater oil volume surfacing after the dispersant injection stopped.

continued from page 1011
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Mapping Oil Slicks at 
Night
Up to the present (including the DWH 
incident), oil spill response activities, 
including visual aerial surveys, oil 
recovery, in-situ burning and dispersant 
applications have been generally 
limited to daylight hours. The primary 
reason for suspending response 
operations at night is safety. However, 
decreased ability to efficiently and 
accurately locate suitable oil targets 
at night also restricts direct response 
efficiency at nighttime. This limitation 
can become even more serious during 
a potential future wintertime spill 
at high latitudes where very short 
or no daily sunlight intervals occur. 
Experiments done at Ohmsett by OI in 
the past few years show that thermal 
IR imaging clearly reveals floating 
oil during nighttime, and actually 
enables useful estimations of its 
relative thickness distributions to be 
made. Similar observations were also 
made by Svejkovsky when examining 
thermal IR videos collected at night 
by the Spanish Coast Guard over areas 
affected by the M/V Prestige spill off 
Spain in 2002.

Thermal imaging of oil at night 
yields data that is actually easier to 
interpret than imagery from daytime. 
Unlike during the day when thin oil 
films appear cooler and thick films appear warmer 
than surrounding water, nighttime thermal signals 
from spilled oil appear consistently cooler-than-
water, mostly due to the petroleum’s lower-than-
water emissivity. The negative contrast increases 
with increasing oil thickness up to at least 2 mm, as 
per OI’s experiments, with thicker films exhibiting 
a similar maximum contrast. This effect can thus 
provide a quick, straightforward assessment of relative 
oil thickness and the location of the thickest oil 
accumulations. Even if no direct response operations 
take place at night, pre-dawn thermal imaging-based 
spill surveys could provide the most up-to-date oil 
distribution information for immediate use before 
daytime operations resume.

Thermal imaging could also provide a means 
for at-sea recovery vessels to increase their field of 
view during both day and night and enable them to 
better identify recoverable oil targets. By mounting a 
forward viewing thermal imaging camera on a ship’s 
mast the recovery vessel’s crew could gain a much 
more comprehensive view of upcoming oil patches 
(and their relative thickness) than is presently possible 

Figure 2.  Sequence of color (left) and thermal IR (right) images from a crude oil slick experiment at 
Ohmsett during which dispersant was applied.  Top: Oil slick approximately 2 minutes after laydown while 
dispersant is being applied (thick oil areas are 1-3°C warmer than water); Middle: Oil slick after dispersant 
had been applied and subjected to wave agitation.  Thermal image shows a mixture of dispersed (invisible 
in IR) and undispersed (warm in IR) oil, and sheen (cool in IR); Bottom: Oil slick area 8 minutes after 
dispersant application showing only residual sheen (cool) as it aggregated on the right side of the tank.

Figure 3.  DigitalGlobe’s WorldView-2 satellite multispectral image from near the DWH spill 
source site on 6/17/2010.  Overlaid in color are two thickest oil classes from OI’s aerial 
image-based analyses along two (non-overlapping) flight lines acquired 1.8 hours earlier 
over the same area on the same day.  The vectors show drift distance and direction of 
individual thick oil features tracked through the two-image time interval.  The fastest drift rates 
correspond to  27 cm/sec.  (Satellite image courtesy and copyright of DigitalGlobe).

continued on page 1014
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through visual means. Alternately, a thermal imaging camera could be 
mounted on an unmanned aerial vehicle (UAV) operated and retrievable 
from the recovery vessel, providing even broader field of view coverage.

Conclusions
As satellite and aerial remote sensing becomes a more generally accepted 
and routine part of oil spill response, its applications need not be limited 
to merely mapping the locations, extents and thickness of the existing oil 
slick for direction of operations. As this article shows, the imaging can 
be more application driven by aiding in dispersant effectiveness testing, 
deriving high spatial and temporal resolution oil drift information and offer 
the potential to extend monitoring and recovery guidance into nighttime. 
Although the limited tests and observations outlined here represent only 
initial proof-of-concept studies which need to be followed by additional 
research, they exemplify an expanded role of remote sensing technologies 
in responding to at-sea oil spills.
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